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Abstract

In this paper a computational approach is employed to derive a dimensionless heat transfer correlation for forced
convection over a sphere. This correlation is applicable to fluids with a wide range of Prandtl numbers. The lower end of
this range includes the Prandtl number for liquid sodium (Pr � 0.003), whereas the upper end includes the Prandtl num-
ber for water (Pr � 10).
02 6 Re 6 5� 104
Nu ¼ 2þ 0.47Re1=2Pr0.36 3� 10�3
6 Pr 6 101; 1
The model predictions derived from this research were validated extensively. First, the model was tested in two liquid
metals, and subsequently it was compared with existing experimental data involving water. Both verification procedures
have shown very good agreement between experimental results and model predictions. Multiple regression was em-
ployed to derive the above mentioned correlation. A detailed description of various steps used is described here.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a derth of dimensionless convective heat
transfer correlations applicable to fluids such as liquid
metals. Knowledge of heat transfer rates from particles
at high flux levels has become increasingly important
to the design of energy transfer systems and metallurgi-
cal processes in general.
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Theoretical as well as experimental approaches have
been carried out to analyze the heat transfer in liquid
metals. Hsu [1] and Sideman [2] have derived equations
for heat transfer from a sphere to a liquid metal by
assuming a potential flow around the sphere. Kreith
et al. [3] performed an experimental investigation of
rotating metallic spheres in liquid mercury and sug-
gested a correlation for forced convection. Witte [4] per-
formed experiments on heat transfer from a non-melting
sphere to liquid sodium and obtained an equation
relating the Nusselt number to Reynolds and Prandtl
numbers. Argyropoulos and Mikrovas [5,6] immersed
spheres in liquid aluminum and steel and found correla-
tions for forced and natural convection based on the
measurement of the melting times of the spheres. Many
ed.
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Nomenclature

A area, m2

CV control volume
D diameter, m
g gravity, m/s2

Gr Grashof number, gbq2SPHD3/l2

h heat transfer coefficient, W/(m2 �C)
k thermal conductivity, W/(m �C)
c specific heat capacity (J kg�1 �C�1)
LH latent heat, J/kg
m mass, kg
MT melting time, s
Nu Nusselt number, hD/k
Pr Prandtl number, lc/k
Re Reynolds number, quD/l
SPH superheat, (T1 � Tm) in �C
T temperature, �C
t time, s
Dt time step, s
u velocity, m/s
V volume, m3

Greek symbols

b thermal expansion coefficient, 1/�C
l dynamic viscosity, kg/ms
q density, kg/m3

Subscripts

0 initial condition
1 liquid condition far from sphere
F factor
m melting point (liquidus)
max maximum
S solid condition (solidus)
FC forced convection
corr correlation
model modeling prediction
exper experimental result
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investigators studied the heat transfer characteristics
of solid spheres to fluids with Prandtl number around
unity (Prair � 0.7; Prwater � 10). McAdams [7] compiled
numerous experimental results and correlated all of
them into a single empirical correlation valid for air
and water. Yuge performed pioneering experimental
work on the heat transfer from a sphere to air under
mixed convection [8], suggesting procedures for predict-
ing the Nusselt number. Vliet and Leppert [9] developed
correlations for spheres in water. Hieber et al. [10] stud-
ied the spherical system analytically, but their study was
limited to small Reynolds numbers.

Some researchers studied the melting dynamics of ice
spheres in water at different convective regimes. Vanier
and Tien [11] performed experiments on the melting of
a submerged ice sphere in water, calculating the melting
rate by weighing the sphere. Solomon [12] obtained a
solution for the melting of a sphere in convection as a
function of the average diameter and heat flux. Eskan-
dari et al. [13] reported on a series of experiments to
study the forced convection heat transfer from a flowing
stream of water to an ice sphere. Anselmo et al. [14,15]
undertook an extensive theoretical and numerical analy-
sis of melting both full and partially submerged ice
spheres in a pool of water. Aziz et al. [16] and Hao
et al. [17] performed measurements of the heat transfer
coefficient in the water system by measuring the melting
time of ice spheres in forced convection. Mukherjee et al.
[18], McLeod et al. [19] and Hao et al. [20] conducted
visualization studies of ice spheres melting in water un-
der a mixed convection regime.
In terms of mixed convection around a sphere in
liquid metals, the work of Kreith and his associates is
particularly noteworthy [21,3]. By performing experi-
mental measurements of rotating spheres in media as di-
verse as air and mercury, they concluded that if the
buoyancy parameter (Gr/Re2) is less than 0.3, then nat-
ural convection is negligible, i.e., its effect is lower than
5% as far as the heat transfer is concerned. This value
agrees with the theoretical derivation by Sparrow et al.
[22]. Numerical model predictions regarding the influ-
ence of natural convection on the total melting time of
spheres has been published by Melissari and Argyropo-
ulos [23]. They concluded that for values of the buoy-
ancy parameter lower than the range Gr/Re2 = 0.5–1.0,
the total melting time is not affected by natural convec-
tion effects. Table 1 summarizes all known correlations
for heat transfer around spheres and their range of
applicability. As seen from this summary, all the corre-
lations correspond to either a single or to a narrow range
of Prandtl numbers.

In this paper a numerical model is developed. This
model allows predictions to be made of melting times
of various spheres immersed in fluids with different Pra-
ndtl numbers. An extensive and diverse model verifica-
tion took place. The first two sets of experimental work
for this verification involved liquid metals such as alumi-
num (PrAl = 0.015) and a magnesium alloy AZ91
(PrAZ91 = 0.024). In the third set, the model was verified
with another set of experimental work reported in litera-
ture involving water (Prwater � 10). With the verified
numerical model, predictions of sphere melting times



Table 1
Nusselt number for forced convection around spheres

Authors Applicability Nusselt number correlated

Hsu [1] Pr < 1; Re 6 2 · 105 0.921(Re Æ Pr)1/2

Sideman [2] Pr < 1; Re 6 2 · 105 1.13(Re Æ Pr)1/2

Kreith [3] Pr = 10�2; 7 · 104 6 Re 6 106 0.178Re0.375

Witte [4] Pr = 10�3; 3 · 104 6 Re 6 2 · 105 2 + 0.386(Re Æ Pr)1/2

Argyropoulos [5] 10�2
6 Pr 6 10�1; Re 6 3 · 104 2 + 1.114Re0.557Pr0.914

Whitaker [28] Pr = 0.7; Re 6 8 · 104 2 + [0.4Re1/20.06Re0.67]Pr0.4

Vliet and Leppert [9] Pr � 10; Re 6 105 (2.7 + 0.12Re0.66)Pr1/2

Aziz et al. [16] Pr � 10; 3 · 103 6 Re 6 3 · 104 0.991Re0.527Pr0.043

Hao et al. [17] Pr � 10; Re 6 3 · 103 1.015Re0.48Pr0.23

McAdams [7] PrP 0.7; Re 6 2 · 105 2 + 0.6Re1/2Pr1/3
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were carried out for fluids with very wide range of Pra-
ndtl numbers. The lower end of this range includes the
Prandtl number for liquid sodium (Pr � 0.003), whereas
the upper end includes the Prandtl number for water
(Pr � 10). Melting times, derived from the model predic-
tions, were utilized. From these model predictions, a
dimensionless correlation derived using multiple regres-
sion analysis. In this case the Nusselt number is expressed
as a function of the Reynolds and Prandtl numbers.
2. Mathematical considerations

2.1. Calculating the Nusselt number from the melting time

By applying a heat balance to the sphere, it is possible
to relate the total melting time to the Nusselt number. It
is assumed that the sphere is subject to uniform melting,
meaning that we will calculate the Nusselt number aver-
aged over the entire surface as opposed to the localized
coefficient. The instantaneous heat balance is shown in
Eq. (1).

h � A � SPH � dt ¼ q � LH � dV ð1Þ

where h ¼ Nu � k1
D

.

In this context, D represents the diameter as a variable
and D0 is the initial diameter of the sphere. The sensible
portion of the heat supplied to the sphere is not included
because it is assumed that the shell is formed at the ex-
pense of heating the sphere up to its melting point.
The volume, surface area and volume differential of a
sphere are as follows:

V ¼ 1

6
p � D3

A ¼ p � D2

) dV ¼ 1

2
p � D2dD ¼ 1

2
AdD

ð2Þ

The Nusselt number can be expressed in terms of the
diameter as Nu = C1Re

1/2 = C2D
1/2 for forced convec-

tion. At this stage it would be desirable to express the
exponent in a parametric way since it would be valuable
to find the parameter from the equation rather than set-
ting it at a certain fixed value. Hence this relationship
becomes: Nu ¼ C1RenFC ¼ C2DnFC . Substituting Nu and
dV in the differential heat balance (1), and by rearrange-
ment we obtain:

h � SPH � dt ¼ 1

2
q � LH � dD

) C2 � k1 � SPH � dt ¼ 1

2
q � LH � Dð1�nFCÞ � dD

ð3Þ
The LHS of the equation can be integrated in time,
whereas the RHS of the equation has to be integrated
between the initial diameter (D0) and the maximum
diameter reached by the sphere when the shell is formed
(Dmax), and then from Dmax to D = 0. This yields the
following:

C2 � K1 � SPH �
Z MT

0

dt

¼ 1

2
q � LH

Z Dmax

D0

Dð1�nFCÞ dDþ
Z 0

Dmax

Dð1�nFCÞ dD
� �

) C2 � k1 � SPH �MT

¼ 1

2
q � LH � ð2D

ð2�nFCÞ
max � Dð2�nFCÞ

0 Þ
2� nFC

Substituting Nu ¼ C2DnFC and rearranging terms, we
obtain a relationship between the melting time and the
Nusselt number as a function of the initial diameter
D0 as seen in Eq. (4).

Nu¼ 2
Dmax

D0

� �ð2�nFCÞ

�1

 !
q�LH�D2

0

2�ð2�nFCÞ � k1 �SPH�MT

ð4Þ

Assuming that the diameter can be obtained from the
mass of the sphere using a relationship of the form
m / D3; we can express the Nusselt number as Eq. (4).

Nu ¼ MTF � q � LH � D2
0

2 � ð2� nFCÞ � k1 � SPH �MT
ð5Þ

where MTF ¼ 2m1=3ð2�nFCÞ
F � 1; with mF ¼ mmax

m0
.
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The melting time factor, MTF, affects the total time
of the immersed sphere and is caused by the shell forma-
tion upon immersion. It is calculated based on the mass
increase of the sphere. The mass factor, mF, is calculated
as the ratio between the maximum mass of the sphere
(mmax) and the initial mass (m0). In the subsequent sec-
tions these factors will be estimated. For a value of
nFC ¼ 1

2
, the Nusselt number for forced convection is

Eq. (6).

Nu ¼ MTF
q � LH � D2

0

3 � k1 � SPH �MT
ð6Þ

where

MTF ¼ 2m1=2
F � 1 ð7Þ
Fig. 2. Melting times of 3 cm aluminum spheres.

2.2. Mathematical modeling of the melting sphere

The problem of a melting sphere is modeled as a
three-dimensional system in Cartesian coordinates of
fluid flow and heat transfer coupled by the presence of
natural convection. A detailed explanation, including
the equations solved and numerical scheme imple-
mented, can be found in [24]. A schematic of the domain
used for the calculations can be seen in Fig. 1. The ther-
mophysical properties of aluminum and AZ91 used in
the model are summarized in Table 2.

2.3. Results of the numerical model

The total melting times of 3 cm and 7 cm aluminum
spheres as a function of the bath velocity are shown in
Figs. 2 and 3, respectively. For u = 0 cm/s, the solution
represents the pure natural convection solution. Plots
Fig. 1. Domain used for the numerical simulations.

Table 2
Thermophysical properties of materials used, SI units [29]

Material kS k1 cS cq q l

Al 220 90 1100 1000 2400 1
AZ91 60 80 1200 1400 1750 1
Water 2.2 0.6 2100 4200 1000 1

Fig. 3. Melting times of 7 cm aluminum spheres.
showing velocity vector and isotherms can be found in
[24].

2.3.1. Melting time factor

By running the model for different sphere initial tem-
peratures, T0, the melting time factor was estimated.
This was carried out by calculating the ratio between
the melting time at a given initial temperature, T0, and
an initial temperature, Tm. Fig. 4 shows the melting
time factor, MTF, for aluminum spheres under different
b TS TM LH

.2 · 10�3 1.3 · 10�4 660 660 3.95 · 105

.4 · 10�3 1.2 · 10�4 437 600 3.7 · 105

.2 · 10�3 4.0 · 10�4 0 0 3.4 · 105



Fig. 4. Melting time factor for different operating parameters in
the aluminum system (numerical model).
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conditions of diameter, superheat and velocity, for
T0 = 20 �C and T0 = 450 �C. The values of MTF do
not vary significantly with the diameter and superheat,
but change from MTF = 1.5 in natural convection to
MTF = 1.3 for u = 0.4 m/s, mainly due to the fact that
the melting is non-uniform for the higher values of
velocity in forced flow. If the initial temperature is closer
to the melting point of the material, the shell increase is
much lower and subsequently the melting time factor
would be very close to unity. In any case, there is no
more than a 20% increase in the melting time for
T0 = 450 �C; with little variation in diameter, superheat,
or even velocity.

The maximum mass increase observed in the numer-
ical simulations was of the order of 50%; meaning we
obtain a mass factor mF = 1.5. Using the expression
for the melting time factor, MTF ¼ 2m1=2

F � 1, we ob-
serve that if we use the measured values of mass in-
crease, we obtain a value that is in agreement with the
results of the numerical simulation: MTF = 2(1.5)1/2 �
1 = 1.45

Some specific measurements were carried out where
the spheres were extracted prior to complete melting.
In this way, the shell formed around the sphere could
be measured and the melting time factor could be esti-
mated. The maximum mass increase observed experi-
mentally was of the order of 40–60%.

It is convenient to minimize the error involved in the
estimation of these factors. A possible way is to perform
experiments with heated spheres thus reducing the mass
increase, as observed numerically in Fig. 4. Ideally, a so-
lid sphere at its melting point will not form a shell. How-
ever, it is highly impractical to immerse such spheres
mainly due to their poor mechanical integrity. Neverthe-
less, some experiments were carried out with Aluminum
spheres preheated at T0 = 450 �C simply to determine its
experimental feasibility. These were performed using
3 cm and 5 cm spheres in 60 �C superheat bath in the
velocity range 0–0.3 m/s.
3. Validation of the numerical model

In order to validate the numerical model developed, a
series of tests were carried out to run under the charac-
teristics of a set of established solutions found in the lit-
erature, both analytical and experimental.

3.1. Paterson point heat source analytical solution

First, a one dimensional heat diffusion/melting sys-
tem was developed in spherical coordinates to solve
for Paterson�s point heat source analytical solution
[25]. The conditions chosen emulate the very high heat
transfer rates found in liquid metals. This tests the Heat
Integration Algorithm as well as the ability of the code
to handle a large heat transfer rate under a hypothetical
heat source. A more detailed explanation about this val-
idation can be found in [26].

3.2. Experimental results in melting gallium

Second, a two-dimensional convective/melting sys-
tem in rectangular coordinates was developed in order
to compare it with the experimental study of the melt-
ing of gallium in an enclosure by Gau and Viskanta
[27]. This tests the Heat Integration Algorithm as
well as the natural convection induced flow in a liquid
metal (complete validation results can be found in
[26]).

3.3. Experimental results in melting ice

Third, the three-dimensional model developed for
liquid metals was set to run using the thermophysical
properties of water to simulate the melting of ice spheres
in water. The flow patterns around the spheres obtained
by the model are compared with images from visualiza-
tion studies in water performed by Hao et al. [20]. The
melting times in forced convection obtained experimen-
tally in the ice/water system by Aziz et al. [16] and Hao
et al. [17] are compared with results of our numerical
model. Finally, the model was compared with experi-
mental results in aluminum and AZ91 carried out in
the present work.

3.4. Melting of ice spheres in water

Aziz et al. [16] and Hao et al. [17] performed numer-
ous investigations in the water/ice system. A series of
experiments were conducted to measure forced convec-
tion heat transfer rates from submerged ice spheres in
water.



Fig. 6. Comparison between the numerical model and the
experimental results by Hao et al.
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The three-dimensional model was used to obtain the
melting times of ice spheres under pure forced convec-
tion. The thermophysical properties of water used are
shown in Table 2. The enmeshment and time step
scheme used is similar to the one used for the aluminum
system.

There was no mass increase observed in any of the
spheres, due to the fact that their initial temperature
was only �10 �C (only 10 �C below their melting point).
Calculation of the Nusselt number can be seen by Eq. (8)
(a particular case of Eq. (6), with MTF = 1).

) Nu ¼ q � LH � D2
0

3 � k1 � SPH �MT
ð8Þ

A series of runs were performed using a 3:6 cm ice
sphere, initially at �10 �C, immersed in a water bath
with superheats ranging between 10 �C and 30 �C
and velocities between 0.01 m/s and 0.1 m/s. The calcu-
lated dimensionless heat transfer coefficient was ob-
tained from Eq. (8) and was plotted along with the
experimental results by Aziz et al. (Fig. 5) and Hao
et al. (Fig. 6). The thin solid line in Fig. 6 represents
the results obtained by Aziz et al. in 1995 and were in-
cluded in the original paper by Hao et al for comparison
[17]. The deviation in the Nusselt number reported
on both investigations is of the order of 20%. Good
agreement is observed between the numerical model
and the experimental results from both experimental
investigations.
Fig. 5. Comparison between the numerical model and the
experimental results by Aziz et al.
4. Experimental measurements in liquid metals

4.1. Experimental work involving the revolving liquid

metal tank

The apparatus used to immerse spheres consists of a
cylindrical stainless steel tank that can rotate inside a
heavily insulated electrical resistance furnace, called
Revolving Liquid Metal Tank (RLMT). This is con-
nected to a DC motor capable of controlling the rotating
speed to a resolution of 1 RPM. The interior diameter of
the RLMT is 380 mm, the height is 200 mm and it has a
usable capacity of 20 l (50 kg of aluminum, approxi-
mately). Fig. 7 shows a schematic of the RLMT inside
the electrical resistances furnace.

For the experiments carried out in AZ91, a protective
atmosphere is used, consisting of a mixture of CO2 and
0.5% SF6. A stainless steel tube 1/8 in. was connected
through the lid at approximately the centre of the
RLMT and connected to the protective gas cylinder.
The regular flow rate for the experiments was 2 l/min,
although the system was calibrated to a maximum of
10 l/min of gas to be used in an emergency situation.
The gas inlet can be seen in Fig. 7.

The melting time of the immersed spheres is mea-
sured by means of the change in electrical resistance be-
tween the tip of a wire inside the sphere and the bath.



Fig. 8. Numerical model predictions and experimental results
in aluminum and AZ91 in forced convection (Pr � 10�2).

Fig. 7. Schematic of the apparatus used to immerse spheres
(RLMT).
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Typical results from the data acquired to measure the
melting time can be found in Ref. [24].

4.2. Experimental results in liquid metals

Using the relationship between the Nusselt number
and the melting time of a sphere, all the experimental re-
sults are grouped in a single graph. The results for the
preheated aluminum spheres will also be included in
the graph (the melting time factor used is MTF = 1.1,
as obtained in the numerical model). Also, the results
for AZ91 will be plotted in the same graph; the melting
time factor used is MTF = 1.5 because AZ91 and Alumi-
num show very similar shell formations due to the fact
that their thermophysical properties are very similar.
Moreover, the Prandtl numbers of both systems are also
of the same order of magnitude (PrAl = 0.015 and
PrAZ91 = 0.024), hence the Nusselt number expected
should also be similar for the same convective condition
(Nu = f(Re,Gr,Pr)).

All experiments carried out under forced convective
conditions are grouped together in Fig. 8. This Figure
includes experimental results for 3, 5 and 7 cm alumi-
num spheres. In these experiments, the spheres were at
room temperature prior to immersion. Experimental re-
sults in which the aluminum spheres where preheated at
T0 = 450 �C are also shown in Fig. 8. Finally, experi-
mental results for the AZ91 magnesium alloy are also
depicted in the same figure.
5. Predicting the Nusselt number for other material

systems

The model has been validated with experimental re-
sults in aluminum and AZ91 (Pr � 10�2) as well as with
experiments in the water/ice system (Pr � 101) obtained
from the literature. The Nusselt number can then be pre-
dicted for various fluids having different Prandtl num-
bers. This procedure was carried out by running the
numerical model for several conditions corresponding
to different Prandtl number fluids. With the Nusselt
number obtained for values of the Reynolds and Prandtl
numbers, a correlation of the form Nu ¼ 2þ CRenRePrnPr

is sought. The range of values of the dimension-
less parameters studied are 3 · 10�3

6 Pr 6 101 and
3 · 102 6 Re 6 3 · 104.

The sphere is set to be solid at the same thermal
properties of the liquid and at an initial temperature
equal to its melting point (T0 = Tm) in order to avoid
the shell formation and the subsequent error in estimat-
ing the mass increase and the melting time factor, MTF.
For each condition, the melting time is obtained and the
Nusselt number is calculated using Eq. (6) with
MTF = 1, as done for the water/ice system.

Fig. 9 shows the Nusselt number as a function of the
Prandtl number for the values of the Reynolds number
studied. The slopes of the curves are almost identical
among each other in the log–log plot, meaning that
the exponent of the Prandtl number (nPr) is independent
of the Reynolds number. Fig. 10 shows the relationship
between the Nusselt and the Reynolds number for four
of the eight values of the Prandtl number studied. The
exponent of the Reynolds number (nRe) appears to be
independent of the Prandtl number.

By performing a regression analysis of the data
from the results of the model, an expression for the



Fig. 9. Nusselt number as a function of the Prandtl number for
forced convection on spheres.

Fig. 10. Nusselt number as a function of the Reynolds number
for forced convection on spheres.
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dimensionless heat transfer coefficient is obtained in the
range 3 · 10�3

6 Pr 6 101 and 3 · 102 6 Re 6 5 · 104

for the 24 points considered. The problem is as follows:
find the constants {C, nRe, nPr}P 0 such that I is mini-
mized. The performance index I is given by Eq. (9). The
resultant correlation is Eq. (10), with a standard devia-
tion rcorr = 4%.

I ¼
XN
i¼1

ðNumodel;i � ð2þ CRenRei PrnPri ÞÞ2 ð9Þ

Nu ¼ 2þ 0.47Re0.5Pr0.36 ð10Þ
Eq. (10) is used to predict the dependence of the Nus-
selt number on the Reynolds number for the experimen-
tal results shown in Fig. 8. In this figure, the straight
solid line shows predictions based on Eq. (10). As seen,
there is a good agreement between the various experi-
mental results and predictions based on Eq. (10). The
observed deviation on the lower range of Reynolds num-
bers is partly attributed to buoyancy effects. Uncertainty
analysis on the Nusselt number estimation from Eq. (10)
has shown that the error involved is of the order of 20%.
6. Conclusions

A mathematical model was developed to describe the
various transport phenomena involved when a melting
sphere is immersed in a moving fluid. This model was
validated with various experimental results involving
liquid metals and water. Based on this model, a dimen-
sionless correlation for convective heat transfer over a
sphere was developed.

Nu ¼ 2þ 0.47Re1=2Pr0.36 3� 10�3
6 Pr 6 101;

102 6 Re 6 5� 104 ð11Þ

This correlation has applicability in fluids with a wide
range of Prandtl numbers, and it was compared with
experimental results derived in liquid aluminum and
water. The comparisons have shown good agreement
between predictions from the derived correlation and
experimental results.
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